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fixed coordinate system Uxyz. The particle’s equations of motion are 

The origin 0 is a trivial equilibrium position, unstable under conditions (3. lo), (3.11). 

Let us assume that condition (3.9) is fulfilled, Then, according to what we have proved 
above,this equilibrium position can be made stable if to the potential fortes acting on the par- 

ticle we add a nonconse~ative force P per~ndicular to the particle’s radius-vector 

with projections on the coordinate axes P, = - ply, P, = plx - p3z, PZ = p3y, where 

pi, p3 satisfy system (3.14) (pz = Ul. 
The author thanks V, V. Rumiantsev for posing the problem and for attention to the 

work. 
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The motion of gas in that region of curved hypersonic shock wave, where the 
angle of inclination z of the latter to the velocity vector of the unperturbed 
stream is small, is analyzed with the use of Navier-Stokes equations. The num- 
ber of terms retained in expansions of unknown functions in powers of T is such 

as to permit the extension of solution into a new inviscid region by using the 
method of matching outer and inner asymptotic expansions. The statement of 
the problem in the new region is disting~shed by that functions are specified at 
a point not by their values but by Tayior series. 

1, Boric ~ttlmatsr and the form of scymptotic sxpsnaiona in 
ths rsgfon of the shock wavu for x--f cc. Let us consider the hypersonic 
flow of perfect gas of constant specific heats cp and co. We denote the density of gas 
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in theoncoming stream by pX and its velocity directed along the x -axis of a Cartesian 
(v = j in the plane case) or cylindrical (v = 2 in the axisymmetric case> system of 

coordinates,by U, . We neglect the pressure of gas in the oncoming stream and set 
P, = 0, which results in the Mach number ?II, = 0. We define the dependence of 
coefficients of viscosity and thermal conductiviry on enthalpy in the form of power func- 
tions h ==- h&J” and 1; = /i, PI respectively. We denote the projections of the velo- 

city vector on the x - and y-axes by I:~ and I*~ , 
.\I IV , and set x = cP / c~‘. 

respectively, the Prandtl number by 
It is convenient to specify subsequently the independent 

variables and the unknown functions in dimensionless terms, using pX , Cl, and h, as 

the basic dime~ional units. As the basic system we take that of the NavierStokes equa- 
tions in the dimensionless form 

It was shown in [l] that for flows at infinitely high Mach number the unperturbed 
region is separated from the perturbed one by the line of d~scontin~ty of gasdynamic 

function derivatives, We shall call this line the shock wave front. We shall also use the 
estimates of gasdynamic functions within the shock wave structure, where the angle of 
inclination r of the shock wave front to the oncoming stream velocity vector is small 
in comparison with unity. According to [I] we have 

r’, =71 f . ..I- Q (r’) uu = 0 (%I> 1) -‘I 0 (1) 0‘21 

p = 0 (t”), ui = 0 (72) 

These estimates make it possible to determine the characteristic dimension fir (mea- 
sured along the normal to the shock wave front) of the region in which the flow is affec- 
ted by viscosity and thermal conductivity, i. e. to estimate the thickness of the shock 
wave, Equating the order of the principal convection and viscosity terms in the second 
equation of the Navier-Stokes system (1,X), we obtain 

N = 0 (F-1) &3) 

Let the equation of the shock wave front be of the form 
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y = 6x”, I1 < 1 (1.4) 

For x --+ K the angle of inclination of curve (1.4) tends to zero, i. e. estimates (1.2) 

and (1.3) are valid for considerable s . We substitute for .v the new independent vari- 

able k, = (1 - y / b.d’)_c , and select exponent I!I so that at distances of the order of 

0 (?+-l) from line (1.4) the order of magnitude of g1 becomes unity, i. e. i, becomes 
independent of .z This immediately determines the exponent /3, namely, fl = IL - 

(n - 1) (2~-1). Hence, 
g1 = (1 __ -cl ~“~0~-1~~“0~1) (1.5) 

is to be taken as the variable which defines the flow within the shock wave structure. 
In Fig, 1 this region is denoted by 1. 

_zY/ 

Note that for [j = 0 the order of mag- 

nitude of F;, becomes unity only in the 

caseof yN_C,whenitisnecessaryto 
take into consideration the effects of 

U viscosity and thermal conductivity 

P- s m- throughout the whole region. If in pre- 

ceding formulas 1’,, = 1 is assumed and 

Fig. 1 
t (time.) is substituted for 1’ , i.e. to 
pass to the nonstationary problem, then 

p = 0 corresponds to the exact self-similar solution of the Navier-Stokes equations 
with the variable gr. The equation fi = 0 determines the dependence of the exponent 

~1,) in the expression for the viscosity coefficient on n : co = (1 - h) / (2 - 2n). 
This relationship is also obtained from the dimensional analysis of the independent con- 

stants of the problem [Z]. The relative thickness N / y of the shock wave for z -. ‘h 
is proportional to r-b, i.e. for P > 0 it tends to zero. 

Let us consider the problem of extending the solution from the shock wave region 1 
of characteristic dimension N and b > 0 into the new region and of formulating the 

problem in that region. In subsequent computations, except in the Appendix, we assume 

n = 2 ! (2 + v), 0=3 

Although in the considered problem these values of n and CO are not specific to it, 
but from the physical point of view such choice of n corresponds to the problem of 

hypersonic flow past a finite body (in a nonstationary formulation it corresponds to that 
of strong explosion). The choice of o conforms to that in [3], where the motion in the 

hypersonic trail downstream of the body is analyzed in a similar formulation, 
Let us specify along surface (1.4) the following conditions : 

p = r, = 1, l'!, = p = w = 0 

h 
arx 

h. dl.8, 
XT= 2x- 

=k-$O 
(1.6) 

We seek the solution in the region of the shock wave in the form of series expansions in 

powers of x with coefficients which are functions of the self-similar variable Et. Since 
expansions of the unknown functions for plane and axisymmetric flows are different, we 
shall consider them separately. Let us first consider plane-parallel flows. In accordance 
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with estimates (1.2) we have 

The order of principal terms determined by the powers of s in expansions (1.7) are se- 
lected in accordance with estimates (l-2), and the order of the second and third terms 

has been so chosen as to compensate in the Navier-Stokes equations the products of func- 
tions with subscripts 11 which do not appear in the equations of the first approximation. 
Conditions (1.6) may be restated as conditions imposed on functions of various approxi- 
mations at point F;, = 0 

u,, = v*, = P,, = w,, = 0, R,, = (x - 1) /(x + 1) (1.8) 
U,, = V,, == R,, = P,, = W,, = 0 

Ii,, = V,, = R,, = P,, = W,, = 0 

In addition to conditions (1.8) we specify that for gr + 30 the first approximation 
functions must tend to constant values and that none of the second and third approxima- 

tion functions may exponentially increase. 

2. Syrtem: of equation, of various approximatfonn and the 
alrymptOtiC8 Of their 8OlUtfOn8 for 5,-s- 30. Substituting expansions (1.7) 

into the system of Eqs. (1.1) and integrating once each of these with allowance for (1.8), 

we obtain 

+ R,, - R,lV,, = +, PII = RnW,, (2.1) 

System (2.1) consists of two finite relationships and three differential equations with the 
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equation for the longitudinal velocity U,, separated and solved after all remaining 

functions have been determined. Eliminating RI1 and PII, we obtain a system of two 

first order differential equations for I%‘,, and VI,. This system is equivalent to the sys- 

tem arising in the analysis of the structure of a one-dimensional shock wave in a viscous 

and heat conducting gas, which was considered by numerous authors and was first analy- 
zed in [4]. For Npr = “/4 Eqs. (2.1) admit an analytic solution [4] which satisfies 

conditions (1. 8) and for El --t 30 also conditions 

Urt = VII, Rr, = (x - 1) / (54 + ‘l - 2V1,) 

W,, = V,, (x + 1 - VI,) 1 x 

v112 - 3c (x - 1) In (1 - I’dI 

For other Npr the solution has to be derived numerically, although the relationship 

U,, = VI, remains valid, which can be readily ascertained by the analysis of the se- 
cond and third of Eqs. (2.1). For any Np,. the asymptotics of the first approximation 

functions for g, + XI are of the form 

U1, = 1 + TST, VI, = 1 t TST, R, = 1 + TST (2.2) 

PII = 1 + TST, W,, = 1 + TST 

where TST denotes, as usual, exponentially attenuated terms. 
Taking into consideration conditions (1. 8), we write the system of second approxima- 

tion equations as 

v RI2 - R,,V,, - R,,V,, = + b2RJJ11 (2.3) 

b2Ull? _ Ex"b" W,, dgll ; 
27 (x+1)2 I 

P12 = W&12 + W12R11 

As in the first approximation svstem, the equation which defines U,, in system (2.3) 
is separated. Eliminating R12 and P12 with the use of finite relationships, for W12 

and VI2 we obtain the system of two linear differential equations 
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(2.4) 

4 x -- --L Iv,,~+$v,,v,,+ w,z -+ + 
3 (x+l)a N,, ( 

4 x 1 dW11 
3(?t+1)2 =- 9 x 

> 

G!.Lo’ll~~- 2!L&~WlldF! 
Pr 31 

System (2.4) has the particular solution 

Vo_, = - J/!&V,,, TV,, = - ~/#TY,, (2.5) 

which satisfies the conditions for Et = 0 and g1 -+ X. Point g1 = 0 is singular for 
the system (2.4). and formulas (1.8) do not unambigously define the solution. Let us show 
that the supplementary requirement for the absence of exponential increase for gl--+a) 

makes it possible to isolate an unambigous solution. Let us examine the homogeneous 
system obtained from (2.4) by rejecting its right-hand parts which depend on first appro- 

ximation functions. Simple reasoning shows that the first integral of the homogeneous 
system has 

VIZ’ = dV1, / d&, IV,,’ = dW,, /d& (2.6) 

Using solution (2.6), we can reduce system (2.4) to a first order linear differential equa- 
tion for functions VIZ” and obtain the second linearly independent solution 

The complete solution for function V12 is of the form 

v,, = - “l:,b2vl~ + ClVl,’ i- CZVl, 

The solutions for functions R 12, PI2 and W,,. are of a similar form. Let us apply the 
asymptotics of first approximation functions derived in the Appendix, to the analysis of 
asymptotic properties of V,,’ and VIZ”. Computations show that for k, -+ 0 

For g1 -+ XI function VI,’ exponentially decreases, while ‘V,2” exponentially increases. 
Hence the conditions for g, p: r) and Et -+ YJ make it necessary to set C, = 0 and 
C, = 0. The asymptotic properties of u,, are analyzed in the same way. As the re- 
sult, we obtain the solution of system (2.3) which for E, = 0 satisfies conditions (1.8) 

and for E1 --t 5 the conditions for the absence of exponential increase 
l-i,, --,‘\~b”~‘,,. I.,, -4,‘vi,“i.L1, K,, 0 

(2.8) 
I’,:! = - 4/!,t”‘/‘1*. IV,, - 4, !,l/“ll’ll 
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Formulas (2.3) and (2.8) make it possible to determine the asymptotic behavior of sec- 
ond approximation functions for Et --f >o, namely 

u12 = - 4/sb” + TST, V,, = - 4/9bf + TST, fiIz = 0 (2.9) 

PI? =: - 4iyb? + TST, W,, =I - 4/eb3 + TST 

Taking into account conditions (1.8), for the third approximation functions we obtain 
41 

(2.10) 

41 41 

s 
’ 4XVll RnV,, d5 - XVII’ 
s 

Rn dS, Pl3 = Wl813 + W,,R,, 

n 0 

A feature of Eqs. (2.10) is that they differ from second approximation equations (2.3) 
only by their right-hand parts, i. e. the solutions of the homogeneous systems are the same. 
We take functions (2.6) and (2. ‘7) for these. Using solutions of the homogeneous system 

(2. lo), it is not difficult to derive the solution ofthe nonhomogeneous system,which satis- 
fies the conditions for Et = 0 and $I -+ X. The asymptotics of that solution are of 

the form (2-11) 

U13= -'~&+0(l), 1'13= +,+0(l), Rm= -&Ej,+O(l) 

8. Trrnrltlon to inner region and ttrtement of problem fn that 
region. Let us compare now the principal terms of expansions of function with sub- 

script 13 defined by equalities (2.11) with the principal terms of expansions of functions 
with subscripts 11 defined in (2.3) (such comparison is possible in this problem, since 
second approximation functions do not appear in the system of third approximation func- 
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tions). It will be seen that for Er + x the product x-‘Er can be of the order of unity, 
even when 5 -+ 8% . This condition defines the new self-similar variable 

& ~-7 y / (bx’s) (3.1) 

and the new region denoted by 2 in Fig. 1 in which & is of the order of unity. We use 
the method of matching outer and inner asymptotic expansions for constructing the solu- 

tion in region 2. Using the definition (3.1) of the self-similar variable in this region, 
we seek a solution of the form 

u, -z 1 - !) ,;; i) ,x-z3 IUz(L) + x-*QJ,, (Q] (3.2) 

4 
uy = T& x-1’a I l’?l (E.2) + x-*w22 (&)j 

P= s [&I 64 i x-*‘J&~ (&)I 

8 
P’Tx -1 -_!!-- X-* 3 [ P”,1 (5,) + x-‘,3P3? (Q] 

8 11% 
7J= Y (%+.I)2 

- - s-?,‘X 1 w 21(b) + "-*!3w,, (Ed)1 

Formulas (2.2). (2.9) and (2.11) make it possible to determine the form of unknown 

functions for Es --f 1 

lJ2r = 1 + y13) (& - I)+ * * .) I’,, = 1 + + (& - 1) + . * . (3.3) 

R,, = 1+ -& (Ez - 1) + . . . ) P,1 = 1 + + (& - 1) + . * . 

u22 = 1 +. . ., I/,, = 1 -;-. . ., R,, = 0 + * * . ) P22 = 1 + * * . ) 

w,, = 1 + * . . 

let us consider in detail the first approximation functions. Substituting expansions 
(3.2) into the system of Eqs. (1.1) and retaining the principal terms with respect to 2, 

we obtain the known system of differential equations 

which define a strong explosion [5 - 71. However (3.4) is a system of first order differ- 
ential equations for which it is sufficient to know the values of functions at point g1 =l, 
since the latter determine the solution completely. The second terms in expansion (3.3) 
represent additional conditions which are actually imposed on the derivatives. The solu- 

tion of the problem of strong explosion can be expanded at point E1 = 1 into the Tay- 

lor series 
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There remains to compare expansions (3.3) and (3.5). Such comparison shows that the 

derivatives (dUzt / c&)51+, . . ., (dw,, / d&&c,= 1, in fact conform to specifications 
set by formulas (3.3). This is not a coincidence, and is explained by the analytic pro- 

perties of solutions of the Navier-Stokes equations which are of the elliptic kind. It is 

obvious that by continuing the computation of subsequent terms of expansions of unknown 

functions (1.7) in decreasing powers of 2 in the region of shock wave 1 it is possible 

to expand into Taylor series functions with subscripts 21, 22, . . . , which are definable 

in (3.2) in the neighborhood of point Es = 1 of region 2. 
A linear system of differential equations is obtained for second approximation func- 

tions in region 2, and conditions (3.3) make it possible to formulate the Cauchy problem 
for that system. In this case three terms of expansion (1.7) made it possible to calculate 

for functions with subscripts 22 only the values of these at point & = 1. 
In concluding the analysis of the plane case we note that the first two terms of expan- 

sions (3.2) in region 2 for o = 1 and n = 2/3 can be derived by substituting the gas- 

dynamic shock wave (1.4) with the Hugoniot condition along it for the discontinuity line 
of derivatives (1.4) and the whole region 1. 

The basic aim of this work is not simply the calculation of corrections to the solution 

in the region of a curved shock wave [8, 91 but to show how the solution in the new re- 

gion, where the effect of viscosity and thermal conductivity can be neglected in the prin- 

cipal terms, is formed by the solution in the region of the shock wave. 

4, Axlrymmetric flow, In the case of axial symmetry for ;u = 1 we have 
v=2, n = Ii2 , and the variable El in accordance with (1.5) is of the form E, = 

11 - y / (bs’~‘+lz. W e write the expansions of functions in region 1 as 

&=I- 
b2 

2(x + 1) .X-l Lull (L) + x-lur% (El)1 

L’LJ = +x1 * [VI, (L) + z-lV12 (Ml 

p’ s [RI1 (E.1) -i- f1R12 (EdI 

P= qxb;l) J -l IPI, (Ed -I- x-‘Pl2 (Ed1 

b% 
w= 

2 (it f I)2 
5-l [WI, (El) + ~-‘~&)I 

As in the analysis of plane-parallel flows, the order of principal terms is chosen here in 

conformity with estimates (1.2), while the order of second terms is such as to compen- 

sate discrepancies generated in the Navier-Stokes equations by the principal terms. How- 
ever, unlike in expansions (1.7). only two terms are retained in expansions (1.4). We 
stipulate the fulfillment of conditions (1.8) at point k1 = 0 , and that for El -F 0~ 
the first approximation functions must tend to constant values and that none of the sec- 
ond approximation functions can exponentially increase. These requirements uniquely 
define solutions Uil, . . ., WI,. Analysis of the asymptotics of these solutions for 
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Et -+ CC shows the necessity of introducing the new region 2 whose characteristicvari- 
able is 

& = ‘/ / (bLr’,P) (4.2) 

Unlike in the case of plane-parallel flow for the introduction of the new variable in the 

case of axisymmetric flow it is sufficient to consider only two terms in the expansion 
(4.1). For the principal terms of expansion in region 2, where the variable E, defined 
by equality (4.2) is of the order of unity, we obtain not only the functions themselves , 
but also their first derivatives in the form of boundary conditions for Ez + 1 . 

When formulating the problem in region 2 only for the principal terms it is possible 

to specify Hugoniot’s conditions along line (1.4). For second approximation functions 
these conditions differ from the latter and are derived from the analysis of asymptotics 

of functions with subscripts 12 for E, -+ .w. 
Appendix. For any arbitrary o and n the system of equations for first approxima- 

tion functions in region 1 can be reduced to the form 

x-l 
==O (A.l) 

with initial data TV,, -= C;, = 0 , when $ = 0. However this point is not singular; it 
can be readily shown by passing to the phase variable L’,, that it is a saddle point. The 

behavior of functions in its vicinity depends on parameter 3% I 4 Kp,. For 3x / 4 N,, > 
1 we have 

X-l 1 
I,*, 1 - 

‘_ I,’ 
Zl.'W 

- x + 1 1 - GNP,./ .{x ‘1 + ‘+I 
?-3x @NP,) t 0 (E; ‘“) (A. 2) 

where ay is an arbitrary constant. 
For 11~ < 3x I 4 iVPr < 1 the first and second terms in formulas (A. 2) for VI1 change 

their places, while in the expansion for W,, the form of the principal term remains un- 

changed. The estimate of terms omitted in the expressions for IIll and FYI1 is altered 

and becomes 0 (E, WJ+W’(~~” I+)). for both functions. 

For 3x / 4 NP, = 1 the principal term of expansion L;1 is proportional to :,’ o In 51, 

and for 3x I 4 NP, = l/a it is proportional to &1/20 In E1. 

For 3x I 4 N,, < I/Z we have 

where =;i is an arbitrary constant. 
Some of these expansions were known earlier. Thus asymptotics of the kind of (A. 3) 

were indicated in [lo] in the solution of the self-similar problem of a uniformly acce- 
lerated plate with o = s/2 . Later, these asymptotics were used in the range Iis < 3x i 
4 ‘VI,,. < 1 which is determined by the requirement for the term with the arbitrary 
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coefficient to be the principal one in the expansion of at least one of the functions. As 

shown by expansions (A. 2) and (A. 3) this is not so for 3x / 4 :V,, outside that range. 
In concluding the author thanks 0. S, Ryzhov for his advice and interest. 
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We construct a class of exact solutions of the equation for the velocity potential 

of unsteady plane flows of a polytropic gas. These solutions contain an infinite 
number of arbitrary functions of a single argument. They are given in the form 

of series in rational powers of the characteristic argument in the space of varia- 
bles of the time-velocity hodograph. We study the applications of the series ob- 
tained to solving certain problems of flows arising during the motion of curvili- 
near pistons through a gas, so that at the initial instant the normal velocity and 


